DETechnologies Final Presentation

- Shakib Miri
- Logan Palmer
- Patrick Cleary
- Aidan Clark

March 25, 2024

- Preliminary Matter
- Analytical Models Results
- Final Design
- Final Computer Aided Design
- Finite Element Analysis
- Computational Finite Difference
- Manufacturing Drawings
- Preliminary Thrust Stand

Figure: Cross-sectional view of the final prototype CAD assembly.

CAD

FEA |

Thrust Stand 2

Preliminary Matter

Problem Definition: Very little literature is available that clearly outlines the design process involved in choosing engine sizing for any application. **Alternate RDE Design Approach:** Trial and error engine sizing or borrow working experimental design.

<u>Constraints</u>:

- Technical
 - Lack of local technical expertise
 - Combustion temperature and pressure
- Budgetary
 - Propellant feed system estimated to be between \$50-100k [1]

Final Design

- Sensor prices estimated > \$20k
- Safety
- No local combustion testing facility
- GO2 and GH2 handling best practices [2][3][4].
- Time
- Only 3 months from term start to finish

<u>Budget</u>:

Table: Table of accrued and estimated expenditures.

Description	Cost
ClickUp; Project Management Software	\$ 300.00
Metal Pros - Stock Metal	\$ 1,495.00*
Outsourced Machining Services	\$ 3,450.00*
Team Clothing	\$ 500.00
Total	\$ 5,745.00

Preliminary Matte

CAD

FEA

Drawings

Analytical Model(s) Final Form

Combustion Parameters

• Iterate over range of input parameters; minimize chamber Pressure & Temperature.

Injector Sizing

- 1. Iterate A_i/A_A ratio to reach desired plenum pressure.
- 2. Apply DFMA constraints, update plenum pressure.

Performance Prediction

- 1. Calculate geometry based on iterative I/P parameters.
- 2. Minimum h^{*} predicts low thrust (322N), increase mass flow rate to reach thrust target.

Equation: Mass Flow; Choking Condition; Rearranged for plenum stagnation pressure [5]

$$P_{o} = \dot{m}A\sqrt{\frac{\gamma}{RT_{o}}}(1 + \frac{\gamma - 1}{2})^{-\frac{\gamma + 1}{2(\gamma - 1)}}$$

Equation: Mass Flow; Total Required [6] $\dot{M} = HW\rho_c U_{CJ}$

Equation: Detonation Cell Size [10]

$$\lambda = \lambda_{\rm ref} \frac{P_{\rm ref}}{P}$$

Equation: Minimum Fill Height Correlation [7] [8]

$$l_{\rm f,cr} = (12 \pm 5)\lambda$$

Preliminary Matter

(

Final Design

FEA

CFD

Drawings

Thrust Stand 4 o

Analytical Model(s) Final Form

Preliminary Matter

lytical Model

Final Design

CAD

| FEA

| CFD

rawings |

Thrust Stand 6 of 24

Final Design Parameters

Table: Summary of Combustion Parameters

Parameter	Value
Detonation Cell Size, λ	1.214707 mm
Initial Temperature, T_0	300 K
Initial Pressure, P_0	130 kPa
Equivalence Ratio, ϕ	1.00
Mass Flow Rate, \dot{m}	$3.20 \frac{kg}{s}$
Specific Impulse, I_{SP}	410.6716 s
Peak Pressure, P_{VN}	4299196.4247 Pa
Peak Temperature, T_{CJ}	3720.2403 K
Combustion Speed, V_{CJ}	2848.5565 $\frac{m}{s}$

Table: Summary of Engine Geometry

Parameter	Value
Detonation Cell Size, λ	1.214707 mm
Thrust Goal	1350 N
Fill Height, h^*	h* > 14.964923 mm
Chamber Outer Diameter, D	$60.00 \mathrm{~mm}$
Chamber Inner Diameter, D	$50.00 \mathrm{~mm}$
Channel Width, δ	$5.00 \mathrm{~mm}$
Length, L	50.00 mm

Table: Summary of Injector Plate Parameters

Parameter	Value
Hydrogen Plenum Pressure, P_h	1051.096564 kPa
Hydrogen Injector Area Ratio, A_h	5.4545~%
Hydrogen Injector Specifics	$60\ge \phi \ 1 \ {\rm mm}$
Oxygen Plenum Pressure, P_O	933.436855 kPa
Oxygen Injector Area Ratio, A_O	12.2727~%
Oxygen Injector Specifics	$60 \ge \phi$ 1.5 mm

Table: Summary of Validation Paper Parameters [10]

Parameter	Proposed Engine	American Engine
Thrust Target [N]	1350	1350
Designed Specific Impulse [s]	414	-
Mass Flow Rate [g/s]	320	270-375
Outer Diameter [mm]	60	76.2 (3")
Inner Diameter [mm]	50	66.2
Equivalence Ratio, ϕ	1.0	1.1-1.7
Number of Waves	2	2-3

Preliminary Matter

Analytical Model

CAD

FEA

(

| T

stand **7 of 24**

Drawings

Thrust Stand

FEA: Model Setup & Mesh

Element Type	Percentage of Mesh
Hexahedral (1st Order)	97.43 %
Pentahedral (1st Order)	2.57 %

- Linear isotropic material card, using material properties for AISI 316 Stainless Steel from Washko et al., ASM [11]
- 1-D bolted joint modelling using BEAM's and RBE's

Preliminary Matter

Analytical Model

CAD

Final Design

FEA

CFD

Drawings

Thrust Stand

10 of 24

FEA: Static Loading (Pressure)

Pressure applied to inner walls of combustion chamber, center body and exposed surface of injector plate

• Pressure (as per VN Spike): 4.3 MPa

Preliminary Matter

Analytical Model

Final Design

FEA

CFD

Drawings

Thrust Stand 11 of 24

FEA: Static Loading (Temperature)

Temperature applied to inner walls of combustion chamber, center body and exposed surface of injector plate

• Temperature as per analytical model: 3500 K

Final Design

FE FE

CF

Drawings

Thrust Stand 12 of 24

FEA: Static Loading (Temperature)

Temperature applied to inner walls of combustion chamber, center body and exposed surface of injector plate

• Temperature as per analytical model: 3500 K

Analytical Model

Preliminary Matter

| Final Design

CAE

FEA

CFD: Combustion

Video: 2D RDE Simulation using ConvergeCFD, by Convergent Science [12]

Video: Our 2D RDE - Best Progress yet

Preliminary Matter

Analytical Model

I CAD

Final Design

FEA |

Thrust Stand 16 of 24

GENERAL

G1. DO NOT SCALE FROM DRAWING

DFMA & Manufacturing Drawings

Final Design

Preliminary Matter

Analytical Model

FEA

Thrust Stand 17 of 24

SHEET

REV

А

1/1

DRAWING NUMBER

001-00-A

DFMA & Manufacturing Drawings

Preliminary Matter

FEA

Final Design

DFMA & Manufacturing Drawings

Preliminary Matter

L CA

Final Design

FEA |

Thrust Stand 19 of 24

DFMA & Manufacturing Drawings

Multi-Axis Thrust Stand Design

Objective: Measure multi-axis thrust generation.

• Inherent vibrational instability / thrust vectoring effect due to rotating wave.

Preliminary Matter

Analytical Model

Final Design

CAD

FEA

CFD

Drawir

Thrust Stand 21 of 24

Multi-Axis Thrust Stand Design

Figure: Preliminary Thrust Stand Design

Video: Showing Degrees of Freedom

Preliminary Matter

Analytical Model

Final Design

CAD

FEA

CFD

Drawii

Thrust Stand 22 of 24

References

[1] A. Higgins and C. Kiyanda, private communication, Jan 2024.

[2] M. Lightfoot, S. A. Danczyk, J. Watts, and S. Schumaker, "Accuracy and best practices for small-scale rocket engine testing," in JANNAF 2011 Joint Subcommittee Meeting, 2011.

[3] P. M. Ordin, "Safety standard for hydrogen and hydrogen systems guidelines for hydrogen system design, materials selection, operations, storage and transportation," 1997.

[4] P. M. Ordin et al., "Safety standard for oxygen and oxygen systems-guidelines for oxygen system design, materials selection, operations, storage, and transportation," NASA NSS, vol. 1740, 1996.

[5] N. Hall, "Mass flow choking," Mass Flow Choking, https://www.grc.nasa.gov/www/k-12/airplane/mflchk.html (accessed Mar. 24, 2024).

[6] J. E. Shepherd and J. Kasahara, "Analytical models for the thrust of a rotating detonation engine," 2017.

[7] F. A. Bykovskii, S. A. Zhdan, and E. F. Vedernikov, "Continuous spin detonations," Journal of propulsion and power, vol. 22, no. 6, pp. 1204–1216, 2006.

- [8] A. P. Nair, A. R. Keller, N. Q. Minesi, D. I. Pineda, and R. M. Spearrin, "Detonation cell size of liquid hypergolic propellants: Estimation from a non-premixed combustor," Proceedings of the Combustion Institute, vol. 39, no. 3, pp. 2757–2765, 2023.
- [9] S. F. Connolly-Boutin, Detonation Physics-Based Modelling & Design of a Rotating Detonation Engine. PhD thesis, Concordia University, 2019.
- [10] J. W. Bennewitz, J. R. Burr, B. R. Bigler, R. F. Burke, A. Lemcherfi, T. Mundt, T. Rezzag, E. W. Plaehn, J. Sosa, I. V. Walters, et al., "Experimental validation of rotating detonation for rocket propulsion," Scientific Reports, vol. 13, no. 1, p. 14204, 2023.
- [11] S. Washko and G. Aggen, "Wrought Stainless Steels," in Properties and Selection: Irons, Steels, and High-Performance Alloys, ASM International, 01 1990.
- [12] "Simulating supersonic combustion in an unwrapped rotating detonation engine," Convergent Science, https://www.youtube.com/watch?v=7Q2d9vlWdNQ (accessed Feb. 12, 2024).

[13] R. N. Rezende, L. R. Alves, A. Mishra, H. Shukla, H. Varshney, H. Dhawan, S. Kapoor, U. Jain, and R. Mendonsa, "Designing a thrust vector test stand for the turborocket," in AIAA Propulsion and Energy 2021 Forum, p. 3350, 2021.

https://tenor.com/view/rocket-science-complicated-difficult-challengingmath-gif-23793443

https://www.pinterest.ca/pin/4925880820403094/

Thank-you